OKLAHOMASTATE UNIVERSITY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 4503
Random Signals and Noise Spring 2004

Midterm Exam \#2

Choose any four out of five.
Please specify below which four you choose to be graded.

Name : \qquad

Student ID: \qquad

E-Mail Address: \qquad

Problem 1:

Determine constant a such that the function

$$
F_{X, Y}(x, y)=a\left[\frac{\pi}{2}+\tan ^{-1}\left(\frac{x}{2}\right)\right]\left[\frac{\pi}{2}+\tan ^{-1}\left(\frac{y}{3}\right)\right]
$$

is a valid joint distribution function.

Problem 2:

The probability density functions of two statistically independent random variables X and Y are

$$
\begin{aligned}
& f_{X}(x)=\frac{1}{2} u(x-1) e^{-(x-1) / 2} \\
& f_{Y}(y)=\frac{1}{4} u(y-3) e^{-(y-3) / 4}
\end{aligned}
$$

Find the probability density function of the difference $W=X-Y$.

Problem 3:

The random variables X and Y are statistically independent with exponential densities

$$
\begin{aligned}
& f_{X}(x)=\alpha e^{-\alpha x} u(x), \text { and } \\
& f_{Y}(y)=\beta e^{-\beta y} u(y) .
\end{aligned}
$$

Find the probability density function of the random variable $W=\min (X, Y)$.

Problem 4:

Statistically independent random variables X and Y have moments $m_{10}=2, m_{20}=14, m_{02}=12$, and $m_{11}=-6$. Find the moment μ_{22}.

Problem 5:

Two Gaussian random variables X_{1} and X_{2} are defined by the mean vector and covariance matrix of

$$
\bar{X}=\left[\begin{array}{l}
\bar{X}_{1} \\
\bar{X}_{2}
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1
\end{array}\right], \quad C_{X}=\left[\begin{array}{cc}
5 & -2 / \sqrt{5} \\
-2 / \sqrt{5} & 4
\end{array}\right] .
$$

Two new random variables Y_{1} and Y_{2} are formed using the transformation

$$
T=\left[\begin{array}{cc}
1 & 1 / 2 \\
1 / 2 & 1
\end{array}\right] .
$$

Find the mean vector of random variable Y, \bar{Y}, and covariance matrix of Y, C_{Y}. Also find the correlation coefficient of Y_{1} and $Y_{2}, \rho_{Y_{1}, Y_{2}}$.

